25 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Значение емкости переменного тока

Конденсатор в цепи переменного тока

Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4—6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение частоты тока увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в цепи постоянного тока.

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 π f , С—емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула закона Ома для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью включено активное сопротивление. Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Емкость в цепи переменного тока

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д.с. самоиндукции по фазе на четверть периода или на угол  = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжения и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.

Читать еще:  Как правильно определить влажность древесины

Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол ==90о (на четверть периода) и опере­жает э. д.с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.

Построим векторную диаграмму тока и напряжения для цеь переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштаба (рис. 54,6.)

Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол = 90°, откладываем вектор напряжения вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.

Когда к генератору переменного тока подключена активная на­грузка, то энергия безвозвратно потребляется активным сопротив­лением.

Если же к источнику переменного тока присоединено индуктив­ное сопротивление r= 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьше­нии силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д.с. самоиндукции возвращается обратно генератору.

В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д.с. самоиндукции направлена против напря­жения.

Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д.с. самоиндукции, изме­нив свое направление, стремится поддержать ток в цепи. Под дей­ствием э. д.с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механи­ческую.

В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противопо­ложном направлении. В это время энергия генератора вновь накап­ливается в магнитном поле индуктивности.

В четвертую четверть периода сила тока в цепи убывает, а на­копленная в магнитном поле энергия при воздействии э. д.с. само­индукции вновь возвращается генератору.

Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с ин­дуктивностью на создание магнитного поля, а во вторую и четвер­тую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, воз­вращается обратно генератору.

Из этого следует, что индуктивная нагрузка в отличие от актив­ной в среднем не потребляет энергию, которую вырабатывает гене­ратор, а в цепи с индуктивностью происходит «перекачивание» энер­гии от генератора в индуктивную нагрузку и обратно, т, е. возни­кают колебания энергии.

Из сказанного следует, что индуктивное сопротивление является Реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

§ 54. ЕМКОСТЬ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

В главе I § 10 был объяснен процесс заряда и разряда конденсатора, включенного в цепь постоянного тока.

Рассмотрим теперь цепь переменного тока (рис. 55,а), в кото­рую включена электрическая емкость (конденсатор). Активным сопротивлением этой цепи пренебрегаем (r = 0).

Полярность зажимов генератора переменного тока, включенного в цепь с емкостью, меняется с частотой

В первую четверть периода (рис. 55, в) конденсатор заряжаете и на его пластинах появляются противоположные по знаку электрические заряды (на левой пластине плюс, на правой — минус).

При заряде конденсатора по проводам, соединяющим генератор с пластинами, перемещаются электрические заряды, следовательно, протекает зарядный ток, измеряемый миллиамперметром. Через диэлектрик конденсатора ток не проходит. Как видно на волновой диаграмме, в первую четверть периода во время заряда конденса­тора напряжение на пластинах конденсатора возрастает от нуля до максимального значения, сила тока, наоборот, в начале заряда будет максимальной, а в конце заряда, когда напряжение на конден­саторе (Uс) окажется равным напряжению генератора (Ur,), она станет равной нулю.

За вторую четверть периода напряжение генератора постепенно убывает и становится равным нулю. В это время конденсатор раз­ряжается. При этом разрядный ток, протекающий по проводам, имеет направление, противоположное направлению тока заряда.

За третью четверть периода полярность на зажимах генератора изменится и напряжение возрастет от нуля до наибольшего значе­ния. В это время конденсатор вновь зарядится, но полярность на его пластинах изменится. На левой пластине будет отрицательный заряд, на правой — положительный заряд. По проводам пройдет за­рядный ток, сила которого к концу заряда конденсатора, когда Uс = Ur, станет равной нулю.

В четвертую часть периода напряжение генератора убывает и становится равным нулю. Конденсатор в это время вторично разря­жается, и по проводам, соединяющим генератор с пластинами кон­денсатора, вновь протекает разрядный ток.

Из сказанного следует, что за один период изменения перемен­ного напряжения дважды происходит процесс заряда и разряда конденсатора и при этом в его цепи протекает переменный ток. Кроме того, при заряде и разряде конденсатора ток в цепи и напря­жение не совпадают по фазе. Ток опережает по фазе напряжение на четверть периода, т. е. на 90°.

Построим векторную диаграмму для цепи переменного тока с емкостью (рис. 55, б). Для этого отложим вектор тока I в выбран­ном масштабе по горизонтали. Чтобы на векторной диаграмме по­казать, что напряжение отстает от тока на угол  = 90°, отклады­ваем вектор напряжения Uс вниз под углом 90°.

Выясним, от чего зависит сила тока в цепи с емкостью. Обозна­чим сопротивление цепи Хс и назовем его емкостным сопротивле­нием. Тогда закон Ома для цепи с емкостью можно выразить так:

где U —напряжение генератора, в;

Хc — емкостное сопротивление, ом;

Известно, что сила тока в цепи определяется количеством элек­трических зарядов, проходящих через поперечное сечение провод­ника в единицу времени:

Если в единицу времени по проводам протекает большое количество зарядов, то сила тока будет большой, и наоборот, когда по проводам в каждую секунду протекает малое количество зарядов,
то сила тока оказывается незначительной.

Допустим, что частота переменного тока, вырабатываемого генератором, большая. В этом случае в каждую секунду конденсатор много раз (часто) заряжается и разряжается. В проводах, идущих от генератора к пластинам конденсатора, будет перемещаться в каждую секунду большое количество электрических зарядов. По этому можно сказать, что в рассматриваемой цепи возникает боль­шая сила тока и в данном случае, согласно закону Ома, емкостное сопротивление цепи Хс оказывается малой величиной.

Если же частота переменного тока генератора будет мала, то конденсатор в каждую секунду зарядится и разрядится меньшее количество раз: В связи с этим по проводам цепи в каждую секунду пройдет незначительное количество зарядов и сила тока будет мала, а следовательно, емкостное сопротивление цепи, наоборот, будет большим.

Из сказанного можно сделать вывод, что емкостное сопротивление обратно пропорционально частоте переменного тока.

Емкостное сопротивление зависит не только от частоты переменного тока, но и от величины емкости, включенной в цепь.

Допустим, что в цепь включен конденсатор большой емкости. Количество электричества, которое накапливает конденсатор при заряде и отдает при разряде, прямо пропорционально его емкости:

Чем больше емкость конденсатора, включенного в цепь перемен­ного тока, тем большее количество электричества переместится при заряде и разряде, по проводам, идущим от генератора к его пластинам. Поэтому в проводах возникает ток большой силы и в данном случае, согласно закону Ома, емкостное сопротивление цепи Хc будет мало. Если же включенная в цепь емкость мала, то при заряде и разряде по проводам пройдет меньшее количество электрических зарядов и сила тока будет незначительной, следовательно, емкостное сопротивление цепи, наоборот, будет большим.

§53. Емкость в цепи переменного тока

Ток и напряжение. В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Читать еще:  Виды засора системы канализации

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

где ?q — изменение количества электричества (заряда q) за время ?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

где ?u — изменение напряжения и за время ?t.

Из рис. 191,б видно, что скорость изменения напряжения ?u/?t будет наибольшей в моменты времени, когда угол ?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол ?t равен 90° и 270°, скорость изменения напряжения ?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При ?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

?t =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается. Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i. Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление. Сопротивление, которое оказывает емкость переменному току, называют емкостным. Оно обозначается Xс и измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д. с. ес, возникающей в конденсаторе С. Эта э. д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э. д. с. ес, действующей между его пластинами. Поэтому э. д. с. ес препятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения ?u/?t, т. е. частота его изменения f (значение ?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

Закон Ома для цепи с емкостью:

I = U / Xс = U / ( 1 /(?C) )

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью. Ее можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности (см. рис. 179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью. В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле. Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с. ес. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятие реактивной мощности емкости:

где Uс — напряжение, приложенное к конденсатору (действующее значение) .

Эту мощность можно выразить также в виде

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик. Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

Значение емкости переменного тока

Рассмотрим идеальную цепь состоящая только из ёмкости и источника питания, напряжение в которой изменяется по закону:

Так как C = q/u =>q = Cu=> CUmsinωt

i = dq/dt=c(du/dt)=c(d( Umsinωt)/dt)=CωUmcosωt = CωUmsin(ωt+π/2)

Исходя из выше указанной формулы видно, что ток опережает напряжение по фазе на +π/2 (90°)

Ёмкостное сопротивление

Где: Xc — ёмкостное сопротивление. [Ом]

Мгновенная мощность цепи с ёмкости

Мгновенная мощность цепи с ёмкостиизменяется с двойной частотой достигая, то положительного максимума, то такого же отрицательного.

p = ui = U*I*sin2ωt

При нарастании напряжении источника питания в ёмкости происходит накопление энергии электрического поля до максимального значения. Эта энергия получается от генератора, то есть цепь работает в режиме потребителя, что соответствует положительному значению мощности.

При уменьшении напряжения источника, энергия уменьшается до ноля и возвращается генератору. В этой части периода цепь работает в режиме генератора. Это соответствует отрицательному значению мощности, тогда за период среднее значение мощности равно нулю.

Максимальное значение активной мощности в цепи с ёмкостью называется реактивной мощностью. Она характеризует скорость обмена энергии между генератором и цепью с ёмкостью.

Q = UI = I2*Xc [Вар]

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Цепь переменного тока с ёмкостью

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкостьбудет проходить переменный электрический ток.

Ток iпри условии включения в цепь переменного токанекоторой ёмкостибудет определяется количеством электричества q, протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq– это изменение заряда q(то есть количества электричества) в течение времени Δt.

Что касается заряда q, который накоплен при изменениях напряжения uв конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu– это изменение напряжения uв течение промежутка времени Δt.

Та скорость, с которой изменяется напряжение (она выражается отношением Δu/Δt) будет иметь свои наибольшие значения тогда, когда угол ωtравняется 360°, 180°и 0°. Из этого следует, что значение тока iпринимает свои наибольшие величины именно в эти моменты времени. Если же угол ωtравняется 270°и 90°, то i= 0, поскольку скорость изменения напряжения Δu/Δt= 0.

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода. По мере того, как разница потенциалов на электродах ёмкостирастет вследствие накопления ею электрического заряда, значение тока iпадает. Когда ωt= 90°, наступает полный заряд емкости, значение i= 0, а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока iстановится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкостьначинает разряжаться, то есть во второй четверти периода. Тогда, когда u = 0а ωt= 180°, значение тока iстановится максимальным.

В этот же самый момент ток iначинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt= 270°значение тока iстановится равным нулю, и поэтому процесс заряда прекращается. После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Читать еще:  Принцип работы инфракрасных обогревателей

Получается, что ёмкостьи заряжается, и разряжается два раза на протяжении одного периода изменения напряжения.

Из этого следует, что переменный токiпротекает в цепи непрерывно. Когда ёмкостьвключается в цепь переменного тока, то ток iопережает напряжение uпо фазе на угол, равный 90°. Можно также сказать, что напряжение uотстает по фазе от тока iна угол, равный 90°.

Сопротивление, которое проявляет ёмкостьк переменному току, носит название емкостного. Единицей измерения этой величины является Ом, а обозначается оно Хс.

Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДСес. Направление этой электродвижущей силыпротивоположно приложенному напряжению u, поскольку заряженная ёмкостьрассматривается в качестве источника, у которого между пластинами действует некоторая ЭДСес. Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

Ток и напряжение.

В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

где ?q — изменение количества электричества (заряда q) за время ?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

где ?u — изменение напряжения и за время ?t.

191,б видно, что скорость изменения напряжения ?u/?t будет наибольшей в моменты времени, когда угол ?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол ?t равен 90° и 270°, скорость изменения напряжения ?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При ?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

?t =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается.

Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i.

Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление.Сопротивление, которое оказывает емкость переменному току, называют емкостным.

Оно обозначается Xси измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д.

с. ес, возникающей в конденсаторе С. Эта э.

д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э.

д. с. ес, действующей между его пластинами.

еспрепятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения ?u/?t, т. е. частота его изменения f (значение ?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

Закон Ома для цепи с емкостью:

I = U / Xс= U / ( 1 /(?C) )

Электрическая мощность.Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью.

Ее можнополучить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности (см. рис.

179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью.

В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле.

Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с.

ес. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятие реактивной мощности емкости:

где Uс— напряжение, приложенное к конденсатору (действующее значение) .

Эту мощность можно выразить также в виде

Qс= U2с/ Xсили Qс= I2Xс

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик.

Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

Рассмотрим классическую схему, в которой последовательно подключены: источник переменной ЭДС, активное сопротивление и конденсатор.

Если бы в этой схеме был постоянный источник, конденсаторвыполнил бы роль изолятора в силу своих конструктивных особенностей. В этом случае он бы просто зарядился за определенное время, и его потенциал на обкладках совпал бы с источником ЭДС. После этого токв цепи стал бы равен нулю.

Если же применить аналогичную схему с переменным источником, то токпродолжает «циркулировать» по проводникам – конденсатор подвергается периодической перезарядке. При этом возникающие на его обкладках электрические заряды постоянно меняют как абсолютную величину, так и знаки.

Следует четко понимать, что никакие заряды через диэлектрик, расположенный между обкладками конденсатора, протекать не может. В то же время весьма распространен подход при расчете электрических схем, когда (условно) подразумевается, что через конденсатор протекает ток, соответствующий данному участку цепи.

В переменных замкнутых цепях (для мгновенных значений) по прежнему действует классический закон Ома: ЭДС источника соответствует сумме падений напряженияна каждом участке цепи.

Так как источник имеет переменную ЭДС с определенным периодом и частотой, сила тока в цепи, а также напряжениена конденсаторе изменяются в соответствие с гармоническими законами: конденсатор в первой и третьей четверти периода разряжается, и, соответственно, заряжается в течение других фаз.

В то же время конденсатор оказывает определенное «сопротивление» прохождению по цепи переменного тока. Причем, чем больше его емкость, тем быстрее он перезаряжается, и соответственно, сила тока в цепи будет увеличиваться.

При этом энергетические потери на самом конденсаторе, в отличие от активного сопротивления, практически равны нулю.

На силу тока, «условно проходящего» через конденсатор, влияет и частотапеременного источника ЭДС: понятно, что чем быстрее перезаряжается конденсатор, тем меньшее сопротивление он создает за единицу времени.

Такое емкостное сопротивление определяется следующей формулой:

где С – емкость цепи, в Фарадах;

Способность конденсаторов создавать селективное реактивное сопротивление , в зависимости от частоты, широко используется в различных фильтрах.

Например, чтобы преградить доступ низкочастотного сигнала в высокочастотную часть схемы, применяется последовательное подключение конденсаторов небольшой емкости.

А для защиты блоков питания используются мощные электролилитеские конденсаторы, подключаемые по параллельной схеме.

Ссылка на основную публикацию
Adblock
detector