105 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристика источников питания

Характеристика источников питания

§ 49. Внешняя характеристика источников питания

Внешняя характеристика источников питания (сварочного трансформатора, выпрямителя и генератора)- это зависимость напряжения на выходных зажимах от величины тока нагрузки. Зависимость между напряжением и током дуги в установившемся (статическом) режиме называется вольт-амперной характеристикой дуги.

Внешние характеристики источников питания сварочной дуги показаны на рис. 59. Внешние характеристики сварочных генераторов, показанные на рис. 59 (кривые 1 и 2), являются падающими.

Длина дуги связана с ее напряжением: чем длиннее сварочная дуга, тем выше напряжение. При одинаковом падении напряжения (изменении длины дуги) изменение сварочного тока неодинаково при неодинаковых внешних характеристиках источника. Чем круче характеристика, тем меньше влияет длина сварочной дуги на сварочный ток. При изменении напряжения на величину δ при крутопадающей характеристике изменение тока равно a1 при пологопадающей — а2.


Рис. 59. Внешние характеристики источников питания: 1 — крутопадающая внешняя характеристика, 2 — пологопадающая, 3 — жесткая, 4 — пологовозрастающая

Для обеспечения стабильного горения дуги необходимо, чтобы характеристика сварочной дуги пересекалась с характеристикой источника питания (рис. 60).

В момент зажигания дуги (рис. 60,а) напряжение падает по кривой от точки 1 до точки 2 — до пересечения с характеристикой генератора, т. е. до положения, когда электрод отводится от поверхности основного металла. При удлинении дуги до 3-5 мм напряжение возрастает по кривой 2-3 (в точке 3 осуществляется устойчивое горение дуги). Обычно ток короткого замыкания превышает рабочий ток, но не более чем в 1,5 раза. Время восстановления напряжения после короткого замыкания до напряжения дуги не должно превышать 0,05 с, этой величиной оцениваются динамические свойства источника.


Рис. 60. Внешние характеристики источников питания и сварочной дуги: а — сплошная линия — генератора, штриховая — дуги в момент возбуждения, штрихпунктирная — дуги при горении; 6 — характеристика источников питаний сварочной дуги

На рис. 60,6 показаны падающие характеристики 1 и 2 источника питания при жесткой характеристике дуги 3, наиболее приемлемой при ручной дуговой сварке.

Напряжение холостого хода (без нагрузки в сварочной цепи) при падающих внешних характеристиках всегда больше рабочего напряжения дуги, что способствует значительному облегчению первоначального и повторного зажигания дуги. Напряжение холостого хода не должно превышать 75 В при номинальном рабочем напряжении 30 В (повышение напряжения облегчает зажигание дуги, но одновременно увеличивается опасность поражения сварщика током). Для постоянного тока напряжение зажигания должно быть не менее 30-35 В, а для переменного тока 50-55 В. Согласно ГОСТ 7012 — 77Е для трансформаторов, рассчитанных на сварочный ток 2000 А, напряжение холостого хода не должно превышать 80 В.

Повышение напряжения холостого хода источника переменного тока приводит к снижению косинуса «фи». Иначе говоря, увеличение напряжения холостого хода снижает коэффициент полезного действия источника питания.

Источник питания для ручной дуговой сварки плавящимся электродом и автоматической сварки под флюсом должен иметь падающую внешнюю характеристику. Жесткая характеристика источников питания (рис. 59, кривая 3) необходима при выполнении сварки в защитных газах (аргоне, углекислом газе, гелии) и некоторыми видами порошковых проволок, например СП-2. Для сварки в защитных газах применяются также источники питания с пологовозрастающими внешними характеристиками (рис. 59, кривая 4).

Источники питания их виды, характеристики и классификация

Виды и классификация источников питания

Все источники можно можно упрощенно разделить на следующие разновидности:

К ним относятся всевозможные преобразователи не электрических видов энергии в электрическую. Их можно условно классифицировать на следующие виды: Атомные батареи; Химические источники; Солнечные батареи; Термогенераторы; Топливные элементы; Электрические машины постоянного и переменного тока (генераторы).

Химические источники питания: к ним относятся сухие гальванические элементы, кислотные и щелочные аккумуляторы. Наибольшее распространение среди них получили кислотные аккумуляторные и литиевые батареи.

Солнечные батареи их принцип работы базируется на вентильном фотоэффекте в полупроводниках (фото–ЭДС возникающей на p–n переходе). Под действием светового потока электроны переходят на более высокий энергетический уровень, поддерживая, тем самым, протекание тока во внешней цепи.

Топливные элементы преобразуют энергию топлива в электрическую, без реакции горения. Действие этих элементов базируется на принципах электрохимического окислении углеводородного топлива (пропан, водород, метан, керосин) в окислительной среде. Другими словами Топливные элементы представляют собой «вечные батарейки», при условии, что к ним непрерывно подводится топливо и окислитель (воздух).

Работа термогенераторов основана на термоэлектрическом эффекте, появляющемся при нагреве контакта двух полупроводников или проводников, что приводит к генерации на их свободных (холодных) концах ЭДС.

Одним из электродов атомной батареи является радиоактивный изотоп, вторым служит металлическая оболочка. Под действием радиоактивного излучения на электродах генерируется разность потенциалов в несколько киловольт при токе единицы миллиампер. Срок службы атомных элементов от нескольких лет до десятилетий.

Электрические машины — преобразуют механическую энергию поступательного или вращательного движения в электрическую и наоборот. Их делят на электрические машины постоянного и переменного тока. При одинаковой мощности эти виды электрических машины переменного тока имеют лучшие показатели, чем их аналоги постоянного тока. Поэтому 98% электроэнергии в мире генерируется электрическими машинами переменного тока.

Они не производят электроэнергию, они её преобразуют. Например, блок питания ноутбука преобразовывает сетевое напряжение 220В в постоянное — 19 Вольт. Все виды вторичных питающих источников необходимы для того, чтобы обеспечить электронным устройствам необходимые параметры тока, напряжения, пульсаций и частоты.

Основные задачи вторичных ИП

Обычно перед всеми видами вторичных источников стоит основная задача преобразования сетевой электроэнергии переменного тока промышленной частоты (например, в России это 220 Вольт, 50 Гц, а на враждебном западе – 120 Вольт, 60 Гц).

Линейные источники питания и их виды сегодня практически замещены импульсными, но несмотря на этот факт, они все еще продолжают оставаться практичным решением в радиолюбительских самоделках. Так как они достаточно просты, легко настраиваются и не требуют использования дорогих компонентов, а главное они гораздо надежнее импульсных блоков питания.

Простейший линейный источник питания состоит из сетевого понижающего трансформатора, диодного моста с фильтром и стабилизатора. Основным минусом такой схемы является низкий КПД и необходимость резервирования мощности практически во всех компонентах схемы (т.е. нужна установка радиодеталей допускающих большие нагрузки, чем предполагаемые).

На рисунке показана простейшая схема трансформаторного БП без функции стабилизации тока или напряжения, с двухполупериодным мостовым выпрямителем.

Трансформатор, в некоторых случаях автотрансформатор понижает сетевое напряжение до нужного (в соответствии с поставленными задачами) уровня, затем выпрямитель — выпрямляет его до пульсирующего однонаправленного. В большинстве случаев выпрямитель имеет всего один диод (однополупериодный выпрямитель) или четыре диода, образующие диодный мост (двухполупериодный выпрямитель — показан на рисунке выше). Иногда в радиолюбительской практике могут применятся и другие схемы, например, в выпрямителях с удвоением или умножением напряжения, далее постоянное напряжение сглаживается фильтром, обычно он сглаживает колебания (или как их еще называют многие радиолюбители пульсации). Обычно сетевой фильтр представляет собой просто конденсатор большого уровня емкости. Стабилизатор напряжения необходим для того, чтобы поддерживать требуемый уровень на нагрузке.

Простейший сглаживающий фильтр — это конденсатор большой ёмкости, подключенный параллельно выпрямителю (диодному мосту).

Также в принципиальной схеме могут быть применены фильтры высокочастотных помех или всплесков, реализована защита на варисторах и от короткого замыкания.

Условно все линейные источники можно также разделить на стабилизированные и нестабилизированные. В стабилизированных источниках питания стабилизатор отвечает за поддержание стабильного выходного напряжения.

Самая простейшая схема самодельного блока питания постоянного тока, состоит из трех основных функциональных узлов — это понижающий трансформатор, диодный выпрямитель и сглаживающий конденсаторный фильтр. В зависимости от номинальной мощности БП и эти узлы будут иметь разные габариты и типы. Основный и наиболее дорогой частью является трансформатор, который понижает сетевое переменное напряжения до необходимых номиналов. Прежде чем его выбрать, определитесь с электрической мощностью, которая необходима. Для этого напряжение перемножите на силу тока нагрузки, плюс оставьте небольшой запас мощности примерно на 20-30%.

Схемы стабилизаторов напряжения — радио любительская подборка стабилизаторов напряжения. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных конструкция является возможность защиты от короткого замыкания в нагрузке.

На дворе 21 век трансформаторных блоков питания остается все меньше, т.к им на смену пришли импульсные блоки питания, иначе их еще называют бестрансформаторным. Почему это произошло? Во первых импульсные блоки питания куда более компактны, легче и дешевле в производстве. По мимо этого КПД импульсных источников может доходить до 80%.

Простой импульсный блок питания своими руками:

Самый простой и яркий представитель импульсных блоков для светодиодных лент, модулей изготавливается на питающее напряжение — 5,12,24 В. Содержит совсем небольшое количество радио компонентов, имеет легкий вес и небольшие габариты. Аналогичный трансформаторный БП весил бы пару килограмм, а то и больше. В БП для светодиодных лент тоже имеется трансформатор, но он очень маленький, так как работает на высоких частотах. Отдельным пунктом можно сказать, что КПД такого блока – около 70-80%, но при этом от него генерируются сильные помехи в бытовую сеть. Существует огромное количество импульсных БП работающих на аналогичном принципе — для ноутбуков и нетбуков, принтеров, факсов, телевизоров и мониторов и т. п. Итак, основной плюс ИБП — малые габариты и низкий вес. Гальваническая развязка в них также имеется. А основной их минус тот же, что и у типового трансформаторного. Он может быстро сгореть от перегрузки.

Желательно иметь 15 – 20 % запас по напряжению, току и мощности. То есть если у вас имеется трансформатор на 150 Вт – лучше не подключайте к нему больше, чем 100 Вт нагрузку. . Также стоит добавить, что ИБП не любят включения без нагрузки. Поэтому не рекомендуется оставлять зарядные устройства для мобильниуов и планшетников в розетке по окончанию работы. Хотя большинство современных ИБП имеют защиту от включения без нагрузки.

Как видите ИБП выполняют точно такую же работу, а именно, обеспечивают требуемый уровень напряжения для питания различных устройств электронной техники, которые к ним подсоединены.

Плюсы и минусы импульсных источников питания и их виды

Основными техническими характеристиками, характеризующими все виды питающих источников, являются:

В учебном пособии рассмотрены: технические характеристики и виды БП, а также схемотехника линейных и импульсных питающих источников построенных на полупроводниковых элементах; их функциональные узлы и виды вторичных источников электропитания (трансформаторы, управляемые и неуправляемые выпрямители, сглаживающие фильтры, стабилизаторы на дискретных компонентах и микросхемах, схемы и виды защиты от перегрузки по перенапряжению и току; химические источники тока наиболее распространенных видов (угольно-цинковой и хлористо-цинковой, щелочно-марганцевой, ртутно-цинковой, серебряно-цинковой и литиевых систем). Пособие составлено в соответствии с рабочей программой по дисциплине «Электроника в приборостроении» для студентов ВУЗов и техникумов.

Внешняя характеристика источника питания

Источники тока для питания сварочной дуги должны иметь специальную сварочную внешнюю характеристику.

Внешней характеристикой источника питания (ВАХ) называется зависимость между напряжением на его выходных клеммах и током в сварочной цепи.

Внешние характеристики (рис.2.) могут быть следующих основных видов: крутопадающая1, пологопадающая 2, жесткая 3, возрастающая4.

Рис.2. Основные типы внешних характеристик источников питания для дуговой сварки: 1 – крутопадающая, 2 – пологопадающая, 3 – жесткая, 4 – возрастающая

Источник тока с соответствующей внешней характеристикой выбирают в зависимости от вольтамперной характеристики дуги (рис. 1).

Участки1и 2 ВАХ (рис. 1) соответствуют режимам сварки, применяемым при ручной сварке плавящимся покрытым электродом, а также неплавящимся электродом в среде защитных газов.

Механизированная сварка под флюсом соответствует2 области (рис. 1) и частично захватывает 3область (рис. 1) при использовании тонких электродных проволоки повышенной плотности тока, сварка плавящимся электродом в защитных газах соответствует3 области ВАХ (рис.1). Для питания дуги с падающей или жесткой ВАХ применяют источники питания с падающей или пологопадающей внешней характеристикой.

Для питания дуги с возрастающей ВАХ применяют источники тока с жесткой или возрастающей внешней характеристикой.

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источник постоянного тока – сварочные генераторы с приводом от электродвигателя (сварочные преобразователи), сварочные генераторы с приводом от двигателя внутренне го сгорания (сварочные агрегаты) и полупроводниковые сварочные выпрямители.

Сварочные трансформаторы благодаря своим технико-экономическим показателям имеют преимущества по сравнению с источниками постоянного тока. Они проще в эксплуатации, долговечнее, обладают более высоким к.п.д.

Источники постоянного тока предпочтительнее в технологическом отношении: при их применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях и др.

Основные технические показатели источников питания сварочной дуги: внешняя характеристика, напряжение холостого хода, относительная продолжительность работы (ПР) и относительная продолжительность включения (ПВ) в прерывистом режиме.

Величина ПРопределяется как отношение продолжительности рабочего периода источника питания к длительности полного цикла работы и выражается в процентах:

tр– непрерывная работа под нагрузкой (сварка);

tц– длительность полного цикла (сварка + пауза).

Оптимальная величина ПРпринята 60 %.

Различие между ПР и ПВсостоит в том, что в первом случае источники питания во время паузы не отключаются от сети и при разомкнутой сварочной цепи работают на холостом ходу, а во втором случае источники полностью отключаются от сети, что имеет место при механизированной сварке.

Устойчивое горение дуги возможно при условии пересечения ее статической характеристики с внешней характеристикой источника, т.е. когда Uдуги = Uист .

На (рис. 3) показана крутопадающая внешняя характеристика источника питания и пересекающие ее статические характеристики сварочной дуги различной длины. Точки пересечения характеризуют устойчивое горение дуги, т.к. Uдуги = Uист . так для сварочной дуги длиной lд = 5 мм устойчивое горение будет обеспечено при сварочном токе Iсв = 145 А и Uист = 25 В .В случае увеличения сварочного тока до

Iсв =160 А напряжение источника, как видно из графика, станет Uист = 18 В меньше напряжения дуги, условие Uдуги = Uист не выполняется, однако при таком токе устойчивой будет дуга длиной = 3 мм.

Из (рис.3) видно, что диапазон регулирования устойчивого режима сварки (тока

и напряжения) для изменения длины дуги от 7 до 1 мм составляет для Iсв = 130…170А, для напряжения U = 33…8 В.

Другим показателем работы источника сварочного тока является продолжительность работы (ПР) или продолжительность включения (ПВ). Эти величины характеризуют повторно-кратковременный режим работы, на который рассчитаны источники

Рис.3 Вольтамперные характеристики сварочной дуги

Электрическая сварочная дуга при сварке покрытыми электродами является видом нагрузки, который отличается от других потребителей электроэнергии:

Ø для зажигания дуги нужно напряжение, значительно выше, чем для поддержания ее горения;

Ø дуга горит с перерывами, во время которых электрическая цепь или разрывается, или происходит короткое замыкание;

Ø во время горения дуги с изменением ее длины lд(в пределах 0. 20 мм ) изменяется сопротивление, что приводит к изменению напряжения Uд (в пределах 20. 40 В) и силы сварочного тока Iсв;

Ø при коротком замыкании (в моменты зажигания дуги и перехода капли расплавленного металла на изделие) напряжение между электродом и изделием падает до нуля.

Эти особенности дуги обусловливают такие требования к источникам питания (для ручной дуговой сварки):

1. Напряжение холостого хода должно быть в два-три раза выше напряжения дуги. Это необходимо для легкого зажигания дуги, в то же время оно должно быть безопасным для сварщика при условии выполнения им необходимых правил. Госстандарт устанавливает максимальное напряжение холостого хода Uх.хне более 80В — для источников питания переменного тока и 90 В – для и.п. постоянного тока.

2. Необходимо, чтобы сила тока при коротком замыкании Iкз была ограничена. Нормальный процесс дуговой сварки обеспечивается, если

Iкз / Iсв = 1,1. 1,5 (в некоторых случаях — 2)

3. Изменения напряжения дуги, происходящих в результате изменения ее длины, не должны вызывать существенного изменения силы сварочного тока, а следовательно, изменения теплового режима сварки (необходимо, чтобы источник питания имел специальную форму внешней характеристики).

4. Время восстановления напряжения от 0 до 25 Впосле короткого замыкания не должно превышать 0,05 с, что обеспечивает устойчивость дуги.

5. Необходимо, чтобы источник питания имел устройство для регулирования силы сварочного тока. Пределы регулирования тока должны быть 30 . 130% от номинального сварочного тока. Это необходимо для того, чтобы от одного источника питания можно было сваривать электродами различных диаметров. Всем указанным требованиям отвечают источники питания с крутопадающей внешней вольтамперной характеристикой (ВВАХ).

Цель работы: Изучить и построить ВАХ источников питания

Источники питания сварочной дуги

Для дуговой сварке применяют как постоянный, так и переменный ток. Источниками постоянного тока являются сварочные генераторы (сварочные преобразователи и агрегаты), и сварочные выпрямители (селеновые и кремниевые). Источником переменного тока – сварочные трансформаторы, их применяют значительно чаще. Они более просты в изготовлении в эксплуатации, имеют небольшую массу и стоимость, а также обладают более высоким КПД и более долговечны. Однако при питании переменным током дуга горит неустойчиво, так как 100 раз в секунду напряжение и ток дуги проходят через нулевое значение, что приводит к временной деионизации дугового промежутка.

Постоянный ток предпочтителен в технологическом отношении, при его применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку прямой и обратной полярности.

К источникам сварочного тока предъявляются следующие требования: они должны обеспечить легкое зажигание и устойчивое горение дуги, ограничивать величину тока короткого замыкания, должны быть безопасными в работе и обладать хорошими динамическими свойствами. Динамические свойства определяются временем восстановления напряжения от момента короткого замыкания, когда оно почти равно нулю, до значения 18−20В, когда происходит зажигание дуги. Это время не должно превышать 0,05 с, чем быстрее восстанавливается напряжение, тем динамичнее свойства источника питания.

Рис. 3. Внешние характеристики источников питания и сварочной дуги

Важнейшим вопросом при конструировании источника питания является выбор его внешней характеристики – зависимости напряжения на его выходных клеммах от силы тока в цепи при нагрузке. Внешняя характеристика источников сварочного тока может быть круто падающей 1 (рис. 3, а) пологопадающей 2, жесткой 3, возрастающей 4. Источник сварочного тока выбирают в зависимости от вольтамперной характеристики дуги (см рис. 2), соответствующей применяемому способу сварки. Для ручной дуговой сварки требуются источники сварочного тока с крутопадающей внешней характеристикой.

Режим горения сварочной дуги определяется точкой пересечения характеристик дуги 1 и источника тока 2 (рис 3, б). Точка А называется точкой холостого хода – источник тока включен, развивая максимальное напряжение (60−80В), а сварочная цепь разомкнута. Точка В – точка неустойчивого горения дуги. При изменении соответствующей ей тока дуга либо гаснет, либо ток дуги возрастает до режима устойчивого горения. Точка С является точкой устойчивого горения дуги (Uр = 15−30В). Точка D соответствует режиму короткого замыкания, который имеет место при зажигании дуги и ее замыкании характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током (Iкз ≤ 1,5Iр), чтобы не допустить перегрева токопроводящих проводов и источников тока.

Сварочный трансформатор (рис. 4) снижает высокое напряжение сети (220 или 380В) до напряжения холостого хода (60−80В). Кроме того, трансформатор создает на дуге падающую внешнюю характеристику. Для этого последовательно с дугой и вторичной 2 обмоткой трансформатора включают реактивную (дроссельную) катушку 3. Во время прохождения сварочного тока в витках дроссельной обмотки 3 индуктируется ЭДС самоиндукции противоположно направленная основной ЭДС трансформатора. Поэтому напряжение, подведенное к дуге, снижается от значения холостого хода до 18−30В во время горения дуги и почти до нуля при коротком замыкании. Ток в трансформаторе регулируется изменением величины самоиндукции дросселя при увеличении или уменьшении воздушного зазора S между подвижной 1 (надо рисовать) и неподвижной 2 частями его сердечника. С увеличением зазора S самоиндукция дросселя, которая зависит от магнитного потока сердечника, уменьшается, а напряжение на дуге и, следовательно, сварочный ток увеличивается. При уменьшении зазора – на оборот. Благодаря наличию индуктивного сопротивления достигается падающая внешняя характеристика источника сварочного тока.

Рис. 4. Схема сварочного трансформатора

Величину тока короткого замыкания, а следовательно, и сварочного плавно регулируют изменением магнитного потока обмотки Н путем уменьшения или увеличения тока в этой обмотке реостатом РТ. Для ступенчатого регулирования тока размагничивающая обмотка секционирована. При подключении сварочного провода на левую клемму (рис 22 а) устанавливаются малые токи, на правую – большие.

Сварочные преобразователи. Для сварки источниками постоянного тока служат сварочные преобразователи и сварочные агрегаты. Сварочный преобразователь состоит из генератора постоянного тока и приводного электродвигателя, сварочный агрегат – из генератора и двигателя внутреннего сгорания (д.в.с.). Сварочные агрегаты применяются для работы в полевых условиях и в тех случаях, когда в питающей электрической сети сильно колеблется напряжение. Генератор и д.в.с. (бензиновый или дизельный) монтируются на общей раме без колес, на катках, колесах, в кузове автомашины и на базе трактора.

Рис. 5. Схема сварочного генератора

Сварочный преобразователь состоит из сварочного генератора постоянного тока и приводного электродвигателя, размещенных обычно в общем корпусе и на общем валу. Приводной электродвигатель преобразует электрическую энергию переменного тока в механическую, а сварочный генератор преобразует механическую энергию в электрическую энергию постоянного тока, питающего сварочную дугу.

Рассмотрим схему генераторов с намагничивающей параллельной и разма-гничивающей последовательной обмотками возбуждения (рис. 5). Отличительной особенностью генераторов такой схемы является использование принципа само-возбуждения. Поэтому их полюса изготовляются из феромагнитной стали, имеющий остаточный магнетизм.

Как видно из схемы (рис. 5 ) генератор имеет на основных полюсах две обмотки: обмотку возбуждения Н и последовательно включенную размагничивающую обмотку С. Обмотка Н подключена к дополнительной с и основной а щеткам генератора, напряжение между которыми постоянно по величине и не меняется с изменением нагрузки. Магнитный поток Фн этой обмотки постоянен по величине, поэтому обмотку Н называют обмоткой независимого возбуждения.

При холостом ходе э.д.с. генератора индуктируется только магнитным потоком Фн. При зажигании дуги сварочный ток проходит через последовательную обмотку С, которая подключена к основным щеткам а и б так, что магнитный поток Фс направлен против магнитного потока Фн. Этим обуславливается размагничивающее действие последовательной обмотки. ЭДС, индуктируемая в якоре генератора, тем меньше, чем больше магнитный поток Фс, величина которого зависит от тока сварочной цепи. Чем меньше ток в сварочной цепи, тем меньше Фс и тем выше напряжение генератора. При коротком замыкании, т.е. при максимальном токе в сварочной цепи, магнитный поток Фс последовательной обмотки почти равен магнитному потоку Фн обмотки независимого возбуждения, и напряжение на зажимах генератора близко к нулю. Взаимодействием магнитных потоков двух обмоток обеспечивается падающая внешняя характеристика сварочного генератора..

Сварочные выпрямители. Сварочные выпрямители – это устройства, преобразующие с помощью полупроводниковых элементов (вентилей) переменный ток в постоянный и предназначенные для питания сварочной дуги. Их действие основано на том, что полупроводниковые элементы проводят ток только в одном направлении.

Принципиальная электрическая схема сварочного выпрямителя представлена на рис. 6. Сварочный выпрямитель состоит из двух основных частей: понижающего трехфазного трансформатора I с регулирующим устройством и выпрямительного блока ВС, состоящего из селеновых (или кремниевых) вентилей. Конструкцию сварочного выпрямителя несколько усложняет входящий в него вентилятор ДВ для охлаждения выпрямительного блока. Включение выпрямителя в работу производится пакетным выключателем ПВ. Вентилятор сблокирован с выпрямителем воздушным реле РКВ. При нормальной работе вентилятора срабатывают реле контроля вентиляции РКВ, включаемое потоком воздуха от вентилятора, и магнитный пускатель ПМ, соединяющий обмотки сварочного трансформатора с сетью. Если вентилятор поврежден, то выпрямитель не включается, если повреждение произойдет во время работы, то выпрямитель выключится.

Рис. 6. Схема трехфазного выпрямителя

Сварочные выпрямители перед преобразователи имеют следующие преимущества: более высокий КПД и меньше потери на холостом ходу, лучшие динамические свойства, меньшую массу, большую надежность и простоту обслуживания при эксплуатации, бесшумность при работе, большую экономичность при изготовлении. Основной недостаток сварочных выпрямителей – их большая чувствительность к колебаниям напряжения сети, чем у сварочных преобразователей. Подобно сварочным генераторам они могут быть однопостовыми и многопостовыми и иметь падающую, пологую или жесткую внешнюю характеристики. Для создания падающей характеристики используются сварочные трансформаторы с увеличенным магнитным рассеянием или для этой цели служит дроссель. Для ручной сварки применяют выпрямители с падающей внешней характеристикой.

Читать еще:  Ключевая характеристика канализационных труб пвх кольцевая жесткость
Ссылка на основную публикацию
Adblock
detector