127 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент трансформации

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки — на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь — подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

Наилучший метод — измерение соотношений напряжений между вторичной и первичной обмотками с применением высокоточных вольтметров (класса точности максимум 0,5). Еще лучше, если есть возможность, применять специальный прибор типа «коэффициент-3» — универсальный измеритель коэффициента трансформации, который не потребует присоединения к трансформатору дополнительных источников сетевого напряжения.

Для анализа трансформаторов тока, для расчета его коэффициента трансформации, собирают цепь, где ток величиной от 20 до 100 % номинала пропускают по первичной обмотке трансформатора, при этом измеряется и вторичный ток.

Так и находят коэффициент трансформации трансформатора тока опытным путем: численную величину заданного первичного тока I1 делят на значение измеренного тока во вторичной обмотке I2. Это и будет коэффициент трансформации трансформатора тока. Найденное значение сравнивают с паспортным, если паспорт имеется.

Трансформатор тока с несколькими вторичными обмотками может быть опасен. Прежде чем начинать измерения, все вторичные обмотки трансформатора тока закорачивают, иначе в них может навестись ЭДС, измеряемая киловольтами, что опасно для жизни человека и для оборудования. Большинство трансформаторов тока требуют заземления магнитопровода, для этого на их корпусах есть специальная клемма, обозначенная буквой «З» — заземление.

Что такое коэффициент трансформации

Термин «масштабирование» используется в описании вместо термина «преобразование» с целью акцентировать внимание на том, что трансформаторы не преобразовывают один вид энергии в другой, и даже не один из параметров электрической сети в другой параметр (как иногда привыкли говорить о преобразовании, например, напряжения в ток понижающими трансформаторами). Преобразование — это всего лишь изменение значения какого-либо из параметров цепи в сторону увеличения или уменьшения. И хотя такие преобразования затрагивают практически все параметры электроцепи, принято выделять из них самый «главный» и с ним связывать термин коэффициента трансформации. Это выделение обосновывается функциональным назначением трансформатора, схемой включения к питающей стороне и т. д.

Масштабирование напряжения

Для трансформаторов с параллельным подключением первичной обмотки к источнику энергии интересует, как правило, масштабирование в отношении напряжения, а значит, коэффициент трансформации n выражает отношение первичного (входного) и вторичного (выходного) напряжений :

  • , — входное и выходное напряжения соответственно
  • — ЭДС наводимая в каждом витке любой обмотки данного трансформатора
  • , — число витков первичной и вторичной обмоток
  • , — токи в первичной и вторичной цепях трансформатора
  • , — активные сопротивления обмоток

Если пренебречь падениями напряжений в обмотках, то есть , считать равными нулю, то

Читать еще:  Причины деформации основания здания

Такие трансформаторы еще называют трансформаторами напряжения.

Масштабирование тока

Для трансформаторов с последовательным подключением первичной обмотки к источнику энергии вычисляют масштабирование в отношении силы тока, то есть коэффициент трансформации n выражает отношение первичного (входного) и вторичного (выходного) токов :

Кроме того эти токи связаны еще одной зависимостью

  • , — токи в первичной и вторичной цепях трансформатора
  • , — число витков первичной и вторичной обмоток
  • — ток «холостого хода», состоящий из тока намагничивания и активных потерь в магнитопроводе

Если пренебречь всеми потерями намагничивания и нагрева магнитопровода, то есть считать равным нулю, то

=>

Такие трансформаторы еще называют трансформаторами тока.

Масштабирование сопротивления

Еще одно из применений трансформаторов с параллельным подключением первичной обмотки к источнику энергии — масштабирование сопротивления.

Этот вариант используется, когда не интересует непосредственно само изменение напряжения или тока, а требуется подключить к источнику энергии нагрузку с входным сопротивлением, значительно отличающимся от величин, предъявляемых этим источником.

Например, выходные каскады звуковых усилителей мощности требуют нагрузочное сопротивление выше, чем имеют низкоомные динамики. Другой пример — высокочастотные устройства, для которых равенство волновых сопротивлений источника и нагрузки позволяет получить максимальную выделяемую мощность в нагрузке. И, даже, сварочные трансформаторы, по сути, являются преобразователями сопротивления, в большей мере, чем напряжения, поскольку последнее служит для повышения безопасности работ, а первое является требованием к сопротивлению нагрузки электрических сетей. Хотя сварщику может быть и не важно, каким образом была получена из сети требуемая тепловая энергия для нагрева металла, но вполне понятно, что практически «короткое замыкание» в сети не приветствуется энергоснабжающей стороной.

Соответственно, можно сказать, что масштабирование сопротивления предназначено для передачи мощности из источника в любую нагрузку наиболее «цивилизованным» способом, без «шоковых» режимов для источника и с минимальными потерями (например, если сравнивать трансформаторное масштабирование и простое повышение сопротивления нагрузки с помощью последовательного балластного сопротивления, которое «съест» значительную долю энергии у источника).

Принцип расчета такого масштабирования тоже основан на передаче мощности, а именно, на условном равенстве мощностей: потребляемой трансформатором из первичной цепи (от источника) и отдаваемой во вторичную (нагрузке), пренебрегая потерями внутри трансформатора.

  • , — мощности соответственно потребляемая и отдаваемая трансформатором
  • — потери в самом трансформаторе (в среднем 1-2 % от ), которыми можно пренебречь в данном случае

…..

  • , — входное сопротивление трансформатора вместе с нагрузкой относительно его первичной цепи и входное сопротивление нагрузки во вторичной цепи соответственно (то есть первое — это нагрузка для источника энергии при наличии трансформатора, второе — при отсутствии)

=>=>

Как видно выше, коэффициент трансформации по сопротивлению равен квадрату коэффициента трансформации по напряжению.

Такие трансформаторы иногда называют согласующими (особенно в радиотехнике).

Итоговые замечания

Несмотря на различия в схемах включения, принцип работы самого трансформатора не изменяется и, соответственно, все зависимости напряжений и токов внутри трансформатора будут такими, как показано выше. То есть, даже трансформатор тока, кроме своей «главной» задачи масштабировать силу тока, будет иметь зависимости первичных и вторичных напряжений такие же, как если бы он был трансформатором напряжения, и вносить в последовательную цепь, в которую он включен, сопротивление своей нагрузки, измененное по принципу согласующего трансформатора.

Следует также помнить, что токи, напряжения, сопротивления и мощности в переменных цепях имеют кроме абсолютных значений еще и сдвиг фаз, поэтому в расчетах (в том числе и вышеприведенных формулах) они являются векторными величинами. Это не так бывает важно учитывать для коэффициента трансформации трансформаторов общетехнического назначения, с невысокими требованиями по точности преобразования, но имеет огромное значение для измерительных трансформаторов токов и напряжений.

Для любого параметра масштабирования, если , то трансформатор можно назвать повышающим; в обратном случае — понижающим.

Дополнительные сведения

Особенность учета витков

Трансформаторы передают энергию из первичной цепи во вторичную посредством магнитного поля. За редким исключением так называемых «воздушных трансформаторов», передача магнитного поля осуществляется по специальным магнитопроводам (из электротехнической стали например, или других ферромагнитных веществ) с магнитной проницаемостью намного большей, чем у воздуха или вакуума. Это концентрирует магнитные силовые линии в теле магнитопровода, уменьшая магнитное рассеивание, а кроме того, усиливает плотность магнитного потока (индукцию) в этой части пространства, занятой магнитопроводом. Последнее приводит к усилению магнитного поля и меньшему потреблению тока «холостого хода», то есть меньшим потерям.

Как известно из курса физики, магнитные силовые линии — концентричные и замкнутые сами на себя «кольца», охватывающие проводник с током. Прямой проводник с током охватывается кольцами магнитного поля по всей длине. Если проводник изогнуть, то кольца магнитного поля с разных участков длины проводника сближаются на внутренней стороне изгиба (подобно витковой пружине, изогнутой набок, с прижатыми витками внутри и растянутыми снаружи изгиба). Этот шаг позволяет увеличить концентрацию силовых линий внутри изгиба и соответственно усилить магнитное поле в той части пространства. Еще лучше изогнуть проводник кольцом и тогда все магнитные линии распределенные по длине окружности «собьются в кучку» внутри кольца. Такой шаг называется созданием витка проводника с током.

Все вышеописанное очень хорошо подходит для трансформаторов без сердечника (либо других случаев с относительно однородной магнитной средой вокруг витков), но абсолютно бесполезно при наличии магнитных замкнутых сердечников, которые, к сожалению, по геометрическим причинам никак не могут заполнить все пространство вокруг обмотки трансформатора. И поэтому, магнитные силовые линии, охватывающие виток обмотки трансформатора находятся в неравных условиях по периметру витка. Одним силовым линиям «повезло» больше и они проходят только по облегченному маршруту магнитопроводника, другим же приходится часть пути проходить по сердечнику (внутри витка), а остальную по воздуху, для создания замкнутого силового «кольца». Магнитное сопротивление воздуха почти гасит такие линии поля и соответственно нивелирует наличие той части витка, которая породила эту магнитную линию.

Из всего вышесказанного и отображенного на рисунке существует вывод — в работе трансформатора с замкнутым ферромагнитопроводом принимает участие не весь виток, а только небольшая часть, которая полностью окружена этим магнитопроводом. Или другими словами — основной магнитный поток, проходящий через замкнутый сердечник трансформатора создается только той частью провода, которая проходит сквозь «окно» этого сердечника. Рисунок показывает, что для создания 2-х «витков» достаточно дважды пропустить провод с током через «окно» магнитопровода, экономя при этом на обмотке.

Читать еще:  Выбор и инструкция укладки плитки под камень

Что такое коэффициент трансформации

При использовании различных типов трансформаторов, а также счетчиков электрической энергии нередко возникает вопрос, что такое коэффициент трансформации. По своей сути, данный параметр представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение. Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.

Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.

Основной параметр трансформатора

Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.

Формула

При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.

В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.

Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.

В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.

Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.

Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Как определить коэффициент трансформации

Что такое коэффициент трансформации трансформатора?

Трансформатор – электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

В быту широко распространены эти устройства. Их цель – подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

Читать еще:  Декорирование в технике декупаж

Первичная катушка подключается к источнику питания, вторичная – к нагрузке, их может быть 1 и более. Обмотка – это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 “Коэффициент трансформации – отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.” Если этот коэффициент k больше 1, то прибор понижающий, если меньше – повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Определение и формула коэффициента трансформации трансформатора

Получается, что коэффициент – это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:

  • по напряжению;
  • по току;
  • по сопротивлению.

Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.

Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.

Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.

При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.

Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, nНоминальная предельная кратность
3000/5373125201713119865
4000/538322622201513111086
5000/5382925222016141211108
6000/5392825222016151312108
8000/5382120191814141312119
10000/5371615151412121211109
12000/53920191818121514131211
14000/53815151414121312121110
16000/536151413131210101099
18000/54116161515121414131212

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Ссылка на основную публикацию
Adblock
detector