8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каких отраслях применимы системы синхронного вращения электрических машин

Синхронные электродвигатели. Работа и применение. Особенности

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.

Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:
  • Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
  • Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Недостатками являются следующие отрицательные моменты:
  • При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
  • Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
  • Запуск двигателя происходит по сложной схеме.
  • Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
  • Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
  • Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы

Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.

Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.

Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.

Сфера применения

Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.

Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.

Читать еще:  Таблица стандартных электродных потенциалов

В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.

Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.

Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.

Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.

Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.

Системы синхронного вращения электроприводов

В ряде исполнительных механизмов требуется строго синхронное вращение двух или более осей или же поддержка постоянства соотношения скоростей. При большой удаленности звеньев, для которых должно быть обеспечено равенство угловых перемещений или скоростей, соединение их посредством различного рода механических передач, как правило, не является рациональным в силу их сложности и высокой стоимости. Для упрощения кинематики рабочего механизма бывает целесообразно установка отдельных электродвигателей для каждого рабочего органа и использование системы синхронного вращения, которую называют также «электрическим валом». Использование синхронных машин для привода отдельных звеньев машины не решает задачи, так как на ряду с синхронностью хода иногда возникает необходимость синхронного вращения и в переходных режимах – при пуске и торможении электрической машины.

В каких отраслях применимы системы синхронного вращения электрических машин?

В системе синхронного вращения обеспечивается не только синхронность вращения, но и синфазность положения вращающихся элементов. Однако требования в отношении допустимого расхождения углов поворота осей электродвигателей, как правило, весьма невелики. Обычно лишь ставится требование сохранения устойчивой работы при максимально возможных нагрузках, особенно при пиковом ее характере, и в связи с этим предельный угол расхождения осей ограничивается значением 20 – 30 электрических градусов.

С необходимостью обеспечения синхронности вращения мы встречаемся в механизмах целого ряда отраслей промышленности и прежде всего – в механизмах гидротехнических сооружений; затворах, воротах шлюзов, разводных мостах и так далее.

Значительность пролета, перекрываемого затвором или щитом, а в случае шлюза также сложность прокладки соединительного вала, как в подводной, так и надводной части камеры, делает затруднительным применение однодвигательного привода. Между тем для устранения возможности возникновения перекосов и появления больших механических напряжений в конструкции затвора необходимы строго одинаковые перемещения обеих сторон щита. Поэтому, как правило, устанавливаются самостоятельные электродвигатели на каждой лебедке и используется система синхронного вращения.

Система синхронного вращения необходима для механизмов вертикально-подъемных мостов, в которых пролетное строение поднимается двумя или четырьмя лебедками, установленными на двух башнях, расположенных по обе стороны пролета. Часто синхронное вращение должно иметь место с целью обеспечения правильности закрывания замкового устройства.

В металлургической промышленности системы электрического вала применяются в летучих ножницах, в электроприводе подачи тележек в печь для отжига, если для транспортировки больших листов стали одновременно должны подаваться несколько тележек.

В области подъемно – транспортных механизмов электрический вал используется для привода моста в портальных кранах с большими расстояниями между опорами, в транспортерах с многодвигательным электроприводом.

Также электрический вал начал внедряться в практику металлорежущих станков взамен ходовых винтов и валов. В крупных станках с большим расстоянием между центрами электрический вал обеспечивает большую точность токарно-винторезных работ и требует меньших затрат, чем механическая система связи между суппортом и шпинделем.

Электрический вал также используется в электроприводе ротационных машин полиграфической промышленности, чесальных машин текстильной промышленности при работе их в непрерывном потоке, в электроприводе цепных решеток хлебопекарных печей и в ряде других случаев, где необходимо обеспечение синхронного вращения осей.

Синхронное вращение электрических машин может быть целесообразным в приводе судовых гребных винтов. При сохранении относительного расположения винтов неизменным вибрации судна уменьшаются. Системы синхронного вращения используются также в приводе слипов – сооружений для спуска судов.

Разновидности систем синхронного вращения или электрического вала

Существующие системы электрического вала можно разбить на две основные группы:

  • Системы со вспомогательными уравнительными машинами;
  • Системы, в которых синхронная связь осуществлена между основными приводными электродвигателями;

В системах со вспомогательными уравнительными машинами в качестве последних чаще всего используют асинхронные машины с фазным ротором. Применение синхронных машин здесь нецелесообразно, так как это связано не только с большими затратами, но и не обеспечивает синхронной связи при малых скоростях и в положении покоя.

Как упоминалось выше, в большинстве случаев система электрического вала используется для обеспечения синхронности хода двух или более электрических машин, приводящих во вращение различные механически друг с другом не связанные звенья одной рабочей машины. При этом электрический вал способствует выравниванию режимов работы приводных электродвигателей путем передачи энергии с вала одного менее нагруженного приводного электродвигателя на вал другого, более загруженного. Такого рода электрический вал называют уравнительным.

В некоторых случаях на одной из двух осей рабочей машины приводной электродвигатель может вовсе отсутствовать, и вращение ее осуществляется посредством машины системы электрического вала. При этом вся энергия на эту ось поступает через электрический вал, который поэтому может быть назван «рабочим электрическим валом». Такого рода система используется в токарных станках для передачи движения от шпинделя к суппорту.

Что такое синхронное вращение?

Поместим во вращающееся магнитное полепостоянный маг­нит, установленный на осях так чтобы его ось вра­щения совместилась с осью вращения поля.

Если в качестве та­кого магнита использовать очень легкую магнитную стрелку, то она вращается вместе с полем с синхронной скоростью (от греч. слова «синхронос» — совпадающий по времени), т. е.

поле и стрелка совершают один оборот за одно и то же время. Магнит­ные силы, стремясь установить стрелку по направлению поля, поддерживают это вращение.Схема управления синхронным двигателем вращение.Но если подвижный магнит относительно тяжел, то под дей­ствием вращающегося поля он не тронется с места.Воздействуя на такой неподвижный магнит, вращающееся поле в течение половины оборота создает вращающий момент, а в течение второй половины оборота — тормозящий момент, так как магнитные си­лы тянут магнит то в сторону вращения поля, то в противопо­ложную сторону. Если же посредством какого-либо приспособления разогнать магнит до скорости поля, т.

Читать еще:  Установка электрощитка в квартире

е. до синхронной скорости, то, войдя в синхронизм, магнит будет вращаться со скоростью поля. Он сохранит эту синхронную скорость и тогда, когда ему при­дется преодолевать какую-либо тормозя­щую силу.Только в этом случае он будет отставать от вращающегося поля на не­который постоянный угол.

Этот угол тем больше, чем больше тормозящая сила.Если же эта сила станет слишком боль­шой, то магнит остановится, выпадет из синхронизма. Вращаться медленнее поля он не сможет. Синхронное вращение используется в синхронных двигателях, применяемых, главным образом, в тех случаях, когда нужен дви­гатель значительной мощности, вращающийся со строго постоян­ной синхронной скоростью.Поделитесь полезной статьей:

В ряде исполнительных механизмов требуется строго синхронное вращение двух или более осей или же поддержка постоянства соотношения скоростей.

При большой удаленности звеньев, для которых должно быть обеспечено равенство угловых перемещений или скоростей, соединение их посредством различного рода механических передач, как правило, не является рациональным в силу их сложности и высокой стоимости. Для упрощения кинематики рабочего механизма бывает целесообразно установка отдельных электродвигателей для каждого рабочего органа и использование системы синхронного вращения, которую называют также «электрическим валом». Использование синхронных машин для привода отдельных звеньев машины не решает задачи, так как на ряду с синхронностью хода иногда возникает необходимость синхронного вращения и в переходных режимах – при пуске и торможении электрической машины.

В каких отраслях применимы системы синхронного вращения электрических машин?

В системе синхронного вращения обеспечивается не только синхронность вращения, но и синфазность положения вращающихся элементов. Однако требования в отношении допустимого расхождения углов поворота осей электродвигателей, как правило, весьма невелики. Обычно лишь ставится требование сохранения устойчивой работы при максимально возможных нагрузках, особенно при пиковом ее характере, и в связи с этим предельный угол расхождения осей ограничивается значением 20 – 30 электрических градусов.

С необходимостью обеспечения синхронности вращения мы встречаемся в механизмах целого ряда отраслей промышленности и прежде всего – в механизмах гидротехнических сооружений; затворах, воротах шлюзов, разводных мостах и так далее.

Значительность пролета, перекрываемого затвором или щитом, а в случае шлюза также сложность прокладки соединительного вала, как в подводной, так и надводной части камеры, делает затруднительным применение однодвигательного привода. Между тем для устранения возможности возникновения перекосов и появления больших механических напряжений в конструкции затвора необходимы строго одинаковые перемещения обеих сторон щита. Поэтому, как правило, устанавливаются самостоятельные электродвигатели на каждой лебедке и используется система синхронного вращения.

Система синхронного вращения необходима для механизмов вертикально-подъемных мостов, в которых пролетное строение поднимается двумя или четырьмя лебедками, установленными на двух башнях, расположенных по обе стороны пролета. Часто синхронное вращение должно иметь место с целью обеспечения правильности закрывания замкового устройства.В металлургической промышленности системы электрического вала применяются в летучих ножницах, в электроприводе подачи тележек в печь для отжига, если для транспортировки больших листов стали одновременно должны подаваться несколько тележек.В области подъемно – транспортных механизмов электрический вал используется для привода моста в портальных кранах с большими расстояниями между опорами, в транспортерах с многодвигательным электроприводом.Также электрический вал начал внедряться в практику металлорежущих станков взамен ходовых винтов и валов.

В крупных станках с большим расстоянием между центрами электрический вал обеспечивает большую точность токарно-винторезных работ и требует меньших затрат, чем механическая система связи между суппортом и шпинделем.Электрический вал также используется в электроприводе ротационных машин полиграфической промышленности, чесальных машин текстильной промышленности при работе их в непрерывном потоке, в электроприводе цепных решеток хлебопекарных печей и в ряде других случаев, где необходимо обеспечение синхронного вращения осей.Синхронное вращение электрических машин может быть целесообразным в приводе судовых гребных винтов. При сохранении относительного расположения винтов неизменным вибрации судна уменьшаются. Системы синхронного вращения используются также в приводе слипов – сооружений для спуска судов.

Разновидности систем синхронного вращения или электрического вала

Существующие системы электрического вала можно разбить на две основные группы:

    Системы со вспомогательными уравнительными машинами;Системы, в которых синхронная связь осуществлена между основными приводными электродвигателями;

В системах со вспомогательными уравнительными машинами в качестве последних чаще всего используют асинхронные машины с фазным ротором. Применение синхронных машин здесь нецелесообразно, так как это связано не только с большими затратами, но и не обеспечивает синхронной связи при малых скоростях и в положении покоя.

Как упоминалось выше, в большинстве случаев система электрического вала используется для обеспечения синхронности хода двух или более электрических машин, приводящих во вращение различные механически друг с другом не связанные звенья одной рабочей машины. При этом электрический вал способствует выравниванию режимов работы приводных электродвигателей путем передачи энергии с вала одного менее нагруженного приводного электродвигателя на вал другого, более загруженного. Такого рода электрический вал называют уравнительным.

В некоторых случаях на одной из двух осей рабочей машины приводной электродвигатель может вовсе отсутствовать, и вращение ее осуществляется посредством машины системы электрического вала. При этом вся энергия на эту ось поступает через электрический вал, который поэтому может быть назван «рабочим электрическим валом». Такого рода система используется в токарных станках для передачи движения от шпинделя к суппорту.

Электрооборудование строительных машин

Синхронное вращение двух асинхронных электродвигателей в системе электропривода

Схема синхронного вращения при двух асинхронных двигателях с общим реостатом.

Эта схема представлена на рис. 36; она состоит из двух асинхронных электродвигателей, статорные обмотки которых подсоединены к общей сети, а обмотки роторов присоединены параллельно к сопротивлению Ra. Необходимую устойчивость работы можно получить только при больших нагрузочных моментах, т. е.

при больших величинах скольжения (что приводит к значительным потерям энергии в реостате), и при сравнительно небольшой разнице между нагрузочными моментами. Наличие сопротивления постоянно включенного во вторичную цепь, не позволяет рационально использовать двигатели, так как скорость вращения понижается и величина к. п.

д. установки уменьшается. Постоянная схема может работать только при одинаковых параметрах обоих двигателей.

Рис. 36. Схема синхронного вращения двух асинхронных двигателей с общим реостатом

37. Механические характеристики совместной работы двух асинхронных двигателей на общий валСовместная работа электродвигателей на общий вал с жесткой механической связью между двигателями.В строительной практике иногда прибегают к устройству электропривода с установкой двух двигателей на одном общем валу (мощные экскаваторы, крупные виброплощадки и др.).Механическая характеристика такого привода представляет собой сумму характеристик отдельных двигателей.В большинстве случаев асинхронные двигатели переменного тока одинаковой номинальной мощности имеют различные механические характеристики. На рис.37 приведены механические характеристики двух двигателей 1 и 2 и общая характеристика привода 3.

Читать еще:  Цвет проводов в электропроводке

При каком-либо нагрузочном моменте, например Мл, привод будет вращаться со скоростью щ об/мин. Проведя горизонталь через точку А, найдем моменты М и Мг, развиваемые при этом двигателями.Как видно, больший момент нагрузки будет иметь двигатель с более жесткой механической характеристикой, что может вызвать его перегрев. Поэтому при установке двигателей, одинаковых по мощности, но с различными механическими характеристиками, необходимо во вторичную цепь двигателя с более жесткой характеристикой включать активное сопротивление соответствующей величины.

Таким путем можно добиться того, что двигатели будут развивать одинаковые моменты в значительном диапазоне нагрузки.Если для совместной работы устанавливаются электродвигатели различной номинальной мощности, то следует тщательно подобрать соответствующей величины добавочное сопротивление в цепи ротора одного из них.Схема синхронного вращения с асинхронными вспомогательными машинами. Эта система включает два или несколько элементов, каждый из которых в свою очередь состоит из главного или рабочего двигателя и жестко связанной с ним вспомогательной машины.Отдельные элементы системы не имеют механической связи между собой. Наиболее простой является система из двух элементов.

Каждый элемент состоит из главного приводного двигателя, связанного с валом производственного механизма, и вспомогательной или синхронизирующей электрической машины.Вспомогательные или синхронизирующие машины служат для синхронизации хода валов двух производственных механизмов. Данная система синхронного вращения двигателей является устойчивой при различных нагрузках на валы производственных механизмов. Недостаток ее — необходимость иметь дополнительные машины, которые удорожают установку и усложняют ее эксплуатацию.Читать далее: Основные сведения по механике электроприводаКатегория:- Электрооборудование строительных машин

Главная→ Справочник → Статьи → Форум

Синхронные машины — двигатели, генераторы и компенсаторы

Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.

Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение ? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).

Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.

Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.

Применение синхронных двигателей

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .

Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.

При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.

Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Ссылка на основную публикацию
Adblock
detector