3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем измеряются электрические и магнитные величины

7. Электрические и магнитные измерения

7.1. Измерения электрических величин

С измерениями электрических величин большинство людей знакомится раньше, чем со всеми другими видами измерений. В самом деле, понятия амперметра, вольтметра, прибора для измерения электрического сопротивления знакомы каждому из школьного курса физики и из практического использования тестера, измеряющего в основном электрические величины. Только в последние десятилетия массовому пользователю доступными стали тестеры, измеряющие температуру, освещенность, влажность и другие характеристики, не имеющие отношения к электричеству.

Вместе с тем электрические и магнитные измерительные устройства встречаются на практике не только как измерители собственно электрических величин — силы тока,напряжения,сопротивления,емкости и т. д. Огромное количество электрических и магнитных устройств используется в преобразователях и датчиках в других видах измерений, например в измерениях перемещений, температуры, давления, влажности, в измерениях состава веществ и материалов, в светотехнике и т.д. То же самое относится и к выходным устройствам измерительной техники. Блоки питания, различные преобразователи, блоки памяти, самописцы, блоки сопряжения узлов измерительных приборов — во всех этих узлах измерительной техники преобладающими являются электрические и магнитные элементы.

В данном изложении собственно электрические и магнитные приборы в силу их большого разнообразия рассматривать подробно нет возможности. По этой причине раздел «Электрические измерения» представлен основополагающими сведениями о категориях электроизмерительных приборов, о принципах ихдействия с кратким изложением сущности построения современных приборов с аналого-цифровым преобразованием.

Проводя категорирование электроизмерительных приборов, в первую очередь их надо разделить на два класса — приборы для измерения параметров цепей постоянного тока и приборы для измерения параметров цепей переменного тока. В зависимости от измеряемой физической величины измерительные электрические приборы классифицируются по группам.

Обозначение групп принято буквенное: например, А — амперметры, Б — источники питания, В — вольтметры, Г — генераторы, Е — измерители сопротивления, индуктивности и емкости, С — осциллографы и т. д. Всего электроизмерительные приборы классифицируются по 20 подгруппам.

Электроизмерительные аналоговые шкальные приборы далее можно разделить по принципу действия и по типу индикаторных устройств (рис. 7.1).

Рис. 07.01. Классификация электроизмерительных аналоговых приборов

Классификация аналоговых электроизмерительных приборов по типу индикаторов сигнала в особенных комментариях не нуждается.Стрелоч­ные приборы во всех вариантах в качестве аналогового сигнала имеют угол поворота стрелки индикатора. Прибор преобразует электрическую вели­чину в угол поворота, который собственно и измеряется.Электронно-лу­чевые приборы достаточно хорошо известны в измерительной практике как выходные каскадыосциллографов, электронно-оптических преобра­зователей. В последнее время многие электроизмерительные приборы в качестве выходного устройства имеют компьютер с экраном монитора на выходе. Приборы с компьютерным выходом также можно отнести к элект­ронно-лучевым приборам, хотя в большинстве своем такие приборы уже являются не аналоговыми, а цифровыми, поскольку использование ком­пьютера предполагает наличие аналогово-цифрового преобразователя между датчиком и индикаторным устройством.

Электрические газоразрядные индикаторные устройства также, как и светодиодные индикаторы, являются как бы промежуточными между стрелочными аналоговыми приборами и цифровыми. Прежде чем в изме­рительной технике стал и широко использовать цифровой выход после ко­дирования сигнала, аналогичная процедура была реализована в газораз­рядных и светодиодных индикаторах. По сути дела такие индикаторы уже были простейшими аналого-цифровыми преобразователями, поскольку проводили в простой форме квантование сигнала по определенному уров­ню, после чего зажигалась та или иная цифра в газоразрядном индикато­ре или тот или иной светодиод в светодиодной линейке.

Электромеханические приборы разделяются по принципу действия. Наиболее распространенный тип электромагнитного прибора — магнито­электрический. Принцип действия такого устройства показан на рис. 7.2.

Рис. 07.02. Магнитоэлектрический прибор

Измеряемый ток протекает по катушке, расположенной между полю­сами постоянного магнита. Аналоговый сигнал такого устройства, угол по­ворота катушки, определяется простым соотношением:

где В — магнитная индукция; W — число витков катушки; S — площадь кон­тура катушки; k — жесткость пружины и I — сила тока через катушку. Маг­нитоэлектрические приборы позволяют проводить измерения токов с очень высокой точностью. В оптических приборах такой же принцип использует­ся в поворотных механизмах для точной установки углов в приборах с диф­ракционными решетками.

В электромагнитных приборах магнитное поле создается в катушке, через которую пропускается измеряемый ток. В зависимости от силы тока измеряется сила, втягивающая внутрь катушки постоянный магнит, соединенный с индикаторной стрелой (рис. 7.3).

Рис. 07.03. Электромагнитный прибор

В таком приборе угол поворота стрелки пропорционален квадрату силы тока и дается формулой:

(7.2)

где L — индуктивность катушки; к — жесткость пружины; I — сила тока через электромагнит. Электромагнитные приборы уступают магнитоэлектрическим в чувствительности, но оказываются предпочтительнее последних в измерении больших токов или в тех случаях когда необходимо работать с прибором, имеющим большое входное сопротивление.

В электродинамических приборах используется взаимодействие двух катушек с током (рис. 7.4).

Рис. 07.04. Электродинамический прибор

Зависимость угла поворота подвижной катушки относительно неподвижной дается выражением:

(7.3)

где M12 — взаимная индуктивность катушек; k — жесткость пружины; I1, I2 — токи через катушки. Электродинамическим прибором можно измерять токи или мощности. Последние легко организовать, если через одну из катушек будет проходить ток, пропорциональный разности потенциалов в цепи, а через вторую катушку пропустить рабочий ток.

Электростатический прибор отличается от других типов электроизмерительных устройств тем, что имеет очень высокое входное сопротивление, определяемое проводимостью воздуха между пластинами конденсатора. Сам прибор представляет собой конденсатор переменной емкости, у которого одна из пластин сделана подвижной. При подаче на такой прибор разности потенциалов подвижная пластина втягивается внутрь неподвижной (см. рис. 7.5).

Рис. 07.05. Электростатический прибор

Угол поворота подвижной пластины определяется равенством

(7.4)

где С — емкость конденсатора, k — жесткость пружин, Ux — разность потенциалов.

Читать еще:  Устройство электропроводки в частном доме своими руками

В тепловом электроизмерительном приборе используется свойство проводников изменять длину при нагревании, вызванном прохождением электрического тока. Схема такого прибора аналогична схеме дилатометрического термометра (рис. 6.5). Разница состоит в том, что шкала электроизмерительного прибора градуируется непосредственно в электрических единицах — амперах, ваттах.

Наряду с аналоговыми приборами в измерении электрических величин широко используются цифровые. Все величины при этом преобразуются в цифровую форму при помощи аналогово-цифровых, интервально-числовых или частотно цифровых преобразователей. Форма представления сигнала о физической величине в виде кода называется цифровой. В этом случае каждому значению отсчета ФВ соответствует кодовая группа в виде комбинации простыхсигналов. Код — набор символов и правил их комбинирования для получения кодовой группы. Коды различаются системой счисления: например двоичный, восьмеричный, десятичный и т.д. Чаще всего используется двоичный код в виде двух символов.

Код характеризуется основанием — числом символов, используемых при построении кодовых групп — и разрядностью (значимостью) кода -общим числом символов в кодовой группе. Например, кодирование отсчетов в десятичной системе двоичными кодами может быть осуществлено следующими комбинациями:

Варианты кодирования величин от 0 до 9 в двоичных кодах

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0

Кроме двух крайних форм предоставления сигналов аналоговой и цифровой есть две промежуточные формы. От аналоговой формы к цифровой можно перейти проведя дискретизацию по времени — получиться импульсная форма представления сигнала. Далее нужно провести квантование импульсов по амплитуде (рис. 7.6).

Рис. 07.06. Преобразование аналог-код с начальной дискретизацией

Для преобразования аналог-код можно поступить иначе, проведя сначала квантование сигнала по уровню, а потом проведя дискретизацию квантованного сигнала по схеме, изображенной на рис. 7.7.

Рис. 07.07. Преобразование аналог-код с начальным квантованием

Цифровые электроизмерительные приборы позволяют считывать сигнал непосредственно в единицах измеряемой величины. В качестве индикаторов применяются самые разнообразные устройства, которые также можно раскатегорировать по типу индикаторов и по принципу индикации (рис. 7.8).

Рис. 07.08. Индикаторы цифровых электроизмерительных приборов

Особый класс электроизмерительных приборов представляют собой устройства с компьютером в качестве выходного устройства. На начальном этапе внедрения оргтехники в измерительную технику компьютер использовался в качестве дополнительного блока, т. е. прибор имел индикатор в аналоговом или в цифровом виде, но мог и сопрягаться с компьютером для записи сигналов, обработки информации и представления ее в виде графиков, таблиц, гистограмм и т. п. В современных приборах индикаторы иногда не используются, и компьютер является единственным средствам вывода информации. Такого рода приборы имеют, как правило, первичный преобразователь (датчик), аналого-цифровой преобразователь (АЦП) и компьютер. Поскольку информация в компьютер должна вводиться в виде кода, то такие приборы можно отнести к классу специфических цифровых приборов. Удобства использования компьютерного выхода в измерительных приборах совершенно очевидны: отсутствие необходимости использования самописцев, высокая помехоустойчивость, широкие возможности обработки и представления результатов, возможность передачи полученной информации по каналам связи и многое другое, что позволяет утверждать, что измерительная техника с использованием компьютеров имеет право на специальное рассмотрение.

Единицы измерения магнитных величин.

Система единиц (СИ) определяет единицы магнитных величин на осно­вании законов электромагнетизма через соответствующие электрические и ме­ханические единицы.

Максимальная напряженность имеет место на внешней поверхности проводника. Внутри проводника также возникает магнитное поле, но напря­женность его уменьшается по направлению от внешней поверхности к его оси. Напряженность магнитного поля Н измеряется в амперах на метр (А/м).

1 А/м -это .напряженность магнитного поля, возбуждаемого током 12,566 А прямого, бесконечно длинного проводника на расстоянии 2 м от его оси. Размерность единицы (А/м) и определение ее даны на основании закона полного тока.

Магнитный поток Ф измеряется в веберах (Вб). 1 Вб равен такой маг­нитный поток, при убывании которого до нуля за 1 с в контуре, сцепленном с этим магнитным потоком, возникает ЭДС индукции, равная 1 В: Вб = В • с.

Магнитная индукция В измеряется в теслах (Тл). 1 Тл — это индукция такого равномерного магнитного поля, в котором магнитный поток через пло­щадь в 1 м 2 , перпендикулярную направлению магнитного поля, равен одному 1Вб:Тл = Вб/м 2 .

Абсолютная магнитная проницаемость и магнитная постоянная измеряются в . Так как следовательно, единица абсолютной магнитной проницаемости должна измеряться в

Индуктивность измеряется в генри (Гн). Индуктивностью в1Гн обладает
такой контур, в котором ток, силой 1 А создает сцепленный с контуром магнитный поток в 1 Вб. Так как Гн = , то единица будет Гн/м.

Наряду с системами СИ допускается применение магнитных единиц не-рационализированной электромагнитной системы СГС, основными единицами которой являются сантиметр, грамм, секунда. Формулы электромагнетизма в этой системе нерационализированные; они содержат коэффициент .

В этой системе напряженность Н измеряется в эрстедах (Э):

Магнитный поток Ф измеряется в максвеллах (Мкс). 1 Вб = 10 8 Мкс.

Магнитная индукция В измеряется в гауссах (Гс). 1 Тл = 10 4 Гс,

Индуктивность измеряется в сантиметрах (см). 1 Гн = 10 9 см.

Закон полного тока определяет зависимость напряженности магнитного поля от токов, его возбуждающих. В простейшем случае напряженность Н маг­нитного поля прямолинейного длинного провода на расстоянии х от его оси составит:

Здесь представляет собой длину окружности, описанной вокруг провода радиусом х. Во всех точках этой окружности вследствие симметрии системы напряженность магнитного поля одинакова, а сама окружность совпа­дает с магнитной линией, описанной вокруг проводника

Устройство магнитной системы и принцип ее расчета

Магнитный поток в ЭМ возникает из-за наличия тока в обмотках: в ма­шинах постоянного тока и синхронных по обмоткам возбуждения проходит по­стоянный ток, по обмоткам якоря — переменный; в асинхронных машинах и трансформаторах по всем обмоткам проходит переменный ток.

На (рис. ) показана в схематическом виде часть четырехполюсной ма­шины постоянного тока и изображена картина магнитного потока, создаваемо­го основными полюсами (добавочные полюсы не показаны, чтобы не загромо­ждать чертеж). Ввиду полной симметрии машины поток, создаваемый каждым из полюсов, делится относительно продольной осевой линии полюса на две части, образующие два одинаковых магнитных контура, расположенных сим­метрично по обе стороны от осевой линии данного полюса. Число таких конту­ров равно числу полюсов 2р машины, но при расчете намагничивающей силы достаточно иметь в виду только какой-нибудь один из них.

Читать еще:  Установка электрической вытяжки на кухне

Для улучшения магнитной связи между обмотками и увеличения магнит­ного потока магнитная система машин выполняется из ферромагнитных мате­риалов, обладающих хорошей магнитной проводимостью. В большинстве слу­чаев применяется электротехническая сталь, легированная кремнием (1 —5,0 %) а другими присадками, уменьшающими потери в переменном магнитном поле.

Основной поток Фо составляет только часть магнитного поля, создавае­мого полюсом. Другая часть магнитного поля, называемая потоком рассеяния Фа, ответвляется в пространство между полюсами и, следовательно, не прохо­дит в якорь и не участвует в создании ЭДС (рис. 3).

Цель расчета магнитной системы — установление связи между магнитным потоком Фо и токами в обмотках ЭМ.

Весь путь магнитного потока в электрической машине постоянного тока состоит из пяти участков (см. рис. 3): воздушного зазора длиной 25,, зубцово-го слоя длиной 2hz, сердечника якоря длиной La , сердечника полюсов длиной 2hn, станины длиной £с.

Так как магнитный поток в поперечном разрезе машины распределяется симметрично относительно продольных осей полюсов, то расчет магнитной це­пи производят для 1/2р части машины (см. рис. 3).

По закону магнитной цепи:

(8)

где — магнитное сопротивление цепи

Здесь Lk длина участка магнитной цепи, Sk площадь сечения участка магнитной цепи, µк — магнитная проницаемость участка магнитной цепи.

Отсюда, намагничивающая сила (н. с.) обмотки возбуждения

(9)

где: — намагничивающая сила вдоль магнитной цепи;

— магнитный поток элементарной трубки;

— элемент длинны трубки;

— магнитная проницаемость тел и сред, образующих данный участок цепи;

— сечение элементарной трубки.

При расчете основной н. с. машины Fo мы делим магнитную цепь машины на участки с таким расчетом, чтобы в пределах каждого из этих участков можно было считать, что магнитный поток трубки, проницаемость и сечение ее остаются постоянными по всей длине трубки. В этих условиях мы рассматриваем магнитный поток каждого участка как состоящий из некоторого числа одинаковых элементарных трубок, имеющих длину l каждая, и равномерно распределенных по площади поперечного сечения S данного участка. Характерные для каждого участка магнитной цепи величины приводятся в табл.1.

Следует учесть, что длина элементарных трубок (магнитных линий) на участках в ярме и в спинке якоря неодинакова, поэтому расчет н. с. этих участ­ков ведут по длине средней магнитной линии (см. рис.).

Тогда основная н. с. машины, рассчитанная на пару полюсов, может быть записана в виде:

(10)

Так как согласно условию, магнитный поток распределяется по сечению каждого участка равномерно, то

(11)

В этих условиях уравнение (1) переписывается в следующем виде:

(12)

Уравнение (12) показывает, что для определения н. с. XFo нужно для каждого из пяти участков найти соответствующую ему напряженность магнит­ного поля Нг и умножить ее на длину пути потока на этом участке. Так как , то напряженность магнитного поля данного участка зависит от величины магнитной индукции и магнитной проницаемости материала участка. Если магнитный поток и геометрические размеры всех участков заданы, то тем самым определяется магнитная индукция участка по формуле (2.12). Магнитная проницаемость участка зависит от магнитных свойств материала этого участка. Дпя немагнитных материалов, в частности, для воздушного зазора, имеем: µ = 10 -7 Гн/м в рационализированных системах МКСА и СИ; µ = 4π в рационализированной системе СГС. На практике при расчетах магнитных цепей электрических машин пользуются смешанной системой, в основу которой по­ложена система СГСМ с переводом единиц напряжения, тока, мощности и т. д. в практические единицы — вольт, ампер, ватт и т. д. В этом случае ц = 4π 10 -1 .

Зная индукцию для данного материала, можно определить напряженность магнитного поля Н и построить кривую намагничивания В = f(H) этого материала.

Дата добавления: 2018-05-02 ; просмотров: 990 ; ЗАКАЗАТЬ РАБОТУ

Средства и методы измерения магнитных величин

Иногда в процессе работы, научного исследования или простого любопытства возникает необходимость в определении магнитных величин. Их можно либо рассчитать по формулам, имея необходимые данные, или же произвести замер магнитной величины. В данной статью мы будем рассматривать измерение магнитных величин.

К магнитным величинам, как правило, относят напряженность магнитного поля H, поток магнитный Ф, а также величину магнитной индукции В.

Методику измерения магнитных величин основывают на преобразовании этих величин в электрические, и с помощью электроизмерительного прибора приводят к доступному для человеческого восприятия виду.

Наиболее широкое распространение получили два метода измерения – индукционный и гальваномагнитных эффектов. Разберем каждый в отдельности.

Индукционный метод

Он основан на эффекте возникновения ЭДС в витках электромагнитной катушки при изменении магнитного потока Ф, который сцепляется с ним, как это показано ниже:

Аналитическая зависимость будет иметь вид:

Где: w – число витков в катушке, ψ – потокосцепление.

Если магнитный поле будет однородно, то поток магнитный Ф будет связан с магнитной индукцией В следующим выражением – Ф = Вs, где s – представляет собой площадь сечения катушки.

Если среда, в которой происходит такое явление воздушная, то индукция магнитная В будет связана с напряженностью магнитного поля H такой зависимостью: В = μН, где μ – магнитная постоянная для воздушной среды.

Можно сделать вывод, что индукционный метод позволяет определить напряженность магнитного поля, магнитный поток и индукцию магнитную:

Приборы, которые измеряют магнитный поток, называют веберметрами.

Читать еще:  Маркировка светильника ip44 для потолка расшифровка обозначений

Простейшая схема такого устройства показана ниже:

Она состоит из индукционной катушки, обозначенной на схеме (Wк) и интегрирующего устройства ИУ. Магнитоэлектрические гальванометры, без устройств противодействующего момента, зачастую используют в качестве интегрирующих устройств ИУ. Если катушку измерительного устройства подносить или удалять от магнитного поля, то отклонения измерительного механизма будет пропорционально магнитному потоку и определятся зависимостью:

Где: α – угол отклонения стрелки прибора, Wк – количество витков в катушке измерительной, Сф – цена деления веберметра.

Например, веберметры типа М199 и М1119 имеют цену деления 5*10 -6 и 10 -4 Вб/дел, а основная их погрешность лежит в пределах ±1,5%.

Метод гальваномагнитных эффектов

Очень широкое применение из этих гальваномагнитных эффектов получил так называемый метод Холла.

Суть его заключается в следующем – если через пластину, которая состоит из полупроводника и находится в магнитном поле с индукцией В, пропустить какой – то ток I, то между точками Х – Х возникнет разность потенциалов Ех, которая носит название ЭДС Холла. Схема приведена ниже:

ЭДС Холла будет равна:

Где: Sп – чувствительность преобразователя при токе I.

Устройства, которые измеряют магнитную индукцию В называют тесламетрами.

Упрощенная схема такого прибора с преобразователем Холла (ПХ) показана ниже:

Преобразователь Холла запитуют переменным током через трансформатор ТР от генератора Г. Измеряют ЭДС Холла компенсационным методом . Напряжение компенсирующее Uк, снимают с резистора R1 и подают в противофазе с ЭДС Холла на сравнивающее устройство СУ. С помощью переменного резистора R производят градуировку сравнивающего устройства. Также питание датчика Холла и компенсационной цепи от одного источника напряжения позволяет исключить погрешность от нестабильной частоты и напряжения генератора.

По такой схеме работает тесламетр типа Ш1-8, который может измерять индукцию в диапазоне от 0,01 – 1,6 Тл. Основная погрешность этого устройства не превышает ±2%.

Также датчики Холла очень активно применяют в современных асинхронных электродвигателях с векторным управлением по потокосцеплению электрической машины.

Основные электрические величины

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

ВеличинаЕдиница измерения в СИНазвание электрической величины
qКл — кулонзаряд
RОм – омсопротивление
UВ – вольтнапряжение
IА – амперСила тока (электрический ток)
CФ – фарадЕмкость
LГн — генриИндуктивность
sigmaСм — сименсУдельная электрическая проводимость
e08,85418781762039*10 -12 Ф/мЭлектрическая постоянная
φВ – вольтПотенциал точки электрического поля
PВт – ваттМощность активная
QВар – вольт-ампер-реактивныйМощность реактивная
SВа – вольт-амперМощность полная
fГц — герцЧастота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множительПроизношениеОбозначение (русское/международное)
10 -30куэктоq
10 -27ронтоr
10 -24иоктои/y
10 -21зептоз/z
10 -18аттоa
10 -15фемтоф/f
10 -12пикоп/p
10 -9нанон/n
10 -6микромк/μ
10 -3миллим/m
10 -2сантиc
10 -1децид/d
10 1декада/da
10 2гектог/h
10 3килок/k
10 6мегаM
10 9гигаГ/G
10 12тераT
10 15петаП/P
10 18экзаЭ/E
10 21зетаЗ/Z
10 24йоттаИ/Y
10 27роннаR
10 30куэккаQ

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

Сохраните в закладки или поделитесь с друзьями

Ссылка на основную публикацию
Adblock
detector